Growing Apollonian Packings

نویسنده

  • Colin Mallows
چکیده

In two dimensions, start with three mutually tangent circles, with disjoint interiors (a circle with negative radius has the point at infinity in its interior). We can draw two new circles that touch these three, and then six more in the gaps that are formed, and so on. This procedure generates an (infinite) Apollonian packing of circles. We show that the sum of the bends (curvatures) of the circles that appear in successive generations is an integer multiple of the sum of the bends of the original three circles. The same is true if we start with four mutually tangent circles (a Descartes configuration) instead of three. Also the integrality holds in three (resp., five) dimensions, if we start with four or five (resp. six or seven) mutually tangent spheres. (In four and higher dimensions the spheres in successive generations are not disjoint.) The analysis in the threedimensional case is difficult. There is an ambiguity in how the successive generations are defined. We are unable to give general results for this case. 1 Reflection and the Apollonian group We draw on the definitions and analysis in [1, 2]. The “bend” of a circle or sphere is its curvature, = 1/radius. In n dimensions, a “Descartes configuration” consists of n + 2 mutually tangent spheres with disjoint interiors. The bends bi of these spheres satisfy the Soddy-Gosset relation (see [2]) n( ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Apollonian structure of Bianchi groups

We study the orbit of R under the Bianchi group PSL2(OK), where K is an imaginary quadratic field. The orbit SK , called a Schmidt arrangement, is a geometric realisation, as an intricate circle packing, of the arithmetic of K. We define certain natural subgroups whose orbits generalise Apollonian circle packings, and show that SK , considered with orientations, is a disjoint union of all of th...

متن کامل

Stationary Apollonian packings

The notion of stationary Apollonian packings in the d-dimensional Euclidean space is introduced as a mathematical formalization of so-called random Apollonian packings and rotational random Apollonian packings, which constitute popular grain packing models in physics. Apart from dealing with issues of existence and uniqueness in the entire Euclidean space, asymptotic results are provided for th...

متن کامل

Apollonian Circle Packings: Number Theory II. Spherical and Hyperbolic Packings

Apollonian circle packings arise by repeatedly filling the interstices between mutually tangent circles with further tangent circles. In Euclidean space it is possible for every circle in such a packing to have integer radius of curvature, and we call such a packing an integral Apollonian circle packing. There are infinitely many different integral packings; these were studied in the paper [8]....

متن کامل

On the Local-global Principle for Integral Apollonian 3-circle Packings

In this paper we study the integral properties of Apollonian-3 circle packings, which are variants of the standard Apollonian circle packings. Specifically, we study the reduction theory, formulate a local-global conjecture, and prove a density one version of this conjecture. Along the way, we prove a uniform spectral gap for the congruence towers of the symmetry group.

متن کامل

Apollonian Circle Packings of the Half-plane

We consider Apollonian circle packings of a half Euclidean plane. We give necessary and sufficient conditions for two such packings to be related by a Euclidean similarity (that is, by translations, reflections, rotations and dilations) and describe explicitly the group of self-similarities of a given packing. We observe that packings with a non-trivial self-similarity correspond to positive re...

متن کامل

The sensual Apollonian circle packing

The curvatures of the circles in integral Apollonian circle packings, named for Apollonius of Perga (262-190 BC), form an infinite collection of integers whose Diophantine properties have recently seen a surge in interest. Here, we give a new description of Apollonian circle packings built upon the study of the collection of bases of Z[i], inspired by, and intimately related to, the ‘sensual qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009